RA-ILD: Update on Prevalence, Risk Factors, Pathogenesis, and Therapy

At December 17, 2024

Curr Rheumatol Rep. 2024 Sep 25. doi: 10.1007/s11926-024-01155-8. Online ahead of print.
Daniel I Sullivan 1, Dana P Ascherman 2

Affiliations
• 1Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, UPMC Montefiore Hospital, 3459 Fifth Ave, NW 628, Pittsburgh, PA, 15213, USA. dsulliva@pitt.edu.
• 2Division of Rheumatology and Clinical Immunology, Department of Medicine, Abstract

Purpose of review: Rheumatoid arthritis is frequently complicated by interstitial lung disease (RA-ILD), an underappreciated contributor to excess morbidity and mortality. The true prevalence of RA-ILD is difficult to define given the variability in diagnostic criteria used. The lack of standardized screening methods, an incomplete understanding of disease pathogenesis, and dearth of validated biomarkers have limited the development of controlled clinical trials for this disease.

Recent findings: Numerous studies have focused on clinical, radiographic, genetic, molecular, and/or serologic markers of disease severity as well as risk of disease progression. In addition to defining valuable clinical biomarkers, these studies have provided insights regarding the pathogenesis of RA-ILD and potential therapeutic targets. Additional studies involving immunomodulatory and/or anti-fibrotic agents have assessed new therapeutic options for different stages of RA-ILD. RA-ILD continues to be a major contributor to the increased morbidity and mortality associated with RA. Advancements in our understanding of disease pathogenesis at a molecular level are necessary to drive the development of more targeted therapy.

Related News

Phase III Double-Blind RCT of BI 1015550 in Idiopathic Pulmonary Fibrosis Patients (FIBRONEER-IPF)

Design of a phase III, double-blind, randomised, placebo-controlled trial of BI 1015550 in patients with idiopathic pulmonary fibrosis (FIBRONEER-IPF) PMID: 37597969 Abstract: IntroductionThere is an unmet need for new treatments for idiopathic pulmonary fibrosis (IPF). The oral preferential phosphodiesterase 4B inhibitor, BI 1015550, prevented a decline in forced vital capacity (FVC) in a phase II study in patients with IPF. This study design describes the subsequent pivotal phase III study of BI 1015550 in patients with IPF (FIBRONEER-IPF). Methods and analysis: In this placebo-controlled, double-blind, phase III trial, patients are being randomised in a 1:1:1 ratio to receive 9 mg or 18 mg of BI 1015550 or placebo two times per day over at least 52 weeks, stratified by use of background antifibrotics (nintedanib/pirfenidone vs neither). The primary endpoint is the absolute change in FVC at week 52. The key secondary endpoint is a composite of time to first acute IPF exacerbation, hospitalisation due to respiratory cause or death over the duration of the trial. Ethics and dissemination: The trial is being carried out in compliance with the ethical principles of the Declaration of Helsinki, in accordance with the International Council on Harmonisation Guideline for Good Clinical Practice and other local ethics committees. The results of the study will be disseminated at scientific congresses and in peer-reviewed publications. Trial registration number: NCT05321069.

Phase III Double-Blind RCT of BI 1015550 in Progressive Pulmonary Fibrosis Patients (FIBRONEER-ILD)

Design of a phase III, double-blind, randomised, placebo-controlled trial of BI 1015550 in patients with progressive pulmonary fibrosis (FIBRONEER-ILD) PMID: 37709661 Abstract: Introduction: Progressive pulmonary fibrosis (PPF) includes any diagnosis of progressive fibrotic interstitial lung disease (ILD) other than idiopathic pulmonary fibrosis (IPF). However, disease progression appears comparable between PPF and IPF, suggesting a similar underlying pathology relating to pulmonary fibrosis. Following positive results in a phase II study in IPF, this phase III study will investigate the efficacy and safety of BI 1015550 in patients with PPF (FIBRONEER-ILD). Methods and analysis: In this phase III, double-blind, placebo-controlled trial, patients are being randomised 1:1:1 to receive BI 1015550 (9 mg or 18 mg) or placebo twice daily over at least 52 weeks, stratified by background nintedanib use. Patients must be diagnosed with pulmonary fibrosis other than IPF that is progressive, based on predefined criteria. Patients must have forced vital capacity (FVC) ≥45% predicted and haemoglobin-corrected diffusing capacity of the lung for carbon monoxide ≥25% predicted. Patients must be receiving nintedanib for at least 12 weeks, or not receiving nintedanib for at least 8 weeks, prior to screening. Patients on stable treatment with permitted immunosuppressives (eg, methotrexate, azathioprine) may continue their treatment throughout the trial. Patients with clinically significant airway obstruction or other pulmonary abnormalities, and those using immunosuppressives that may confound FVC results (cyclophosphamide, tocilizumab, mycophenolate, rituximab) or high-dose steroids will be excluded. The primary endpoint is absolute change from baseline in FVC (mL) at week 52. The key secondary endpoint is time to the first occurrence of any acute ILD exacerbation, hospitalisation for respiratory cause or death, over the duration of the trial. Ethics and dissemination: The trial is being carried out in accordance with the ethical principles of the Declaration of Helsinki, the International Council on Harmonisation Guideline for Good Clinical Practice and other local ethics committees. The study results will be disseminated at scientific congresses and in peer-reviewed publications.

The Risk of Lung Cancer in RA and RA-Associated Interstitial Lung Disease

Arthritis Rheumatol. 2024 Dec;76(12):1730-1738. doi: 10.1002/art.42961. Epub 2024 Aug 16. Rebecca T Brooks 1, Brent Luedders 2, Austin Wheeler 2, Tate M Johnson 2, Yangyuna Yang 2, Punyasha Roul 2, Apar Kishor Ganti 2, Namrata Singh 3, Brian C Sauer 4, Grant W Cannon 4, Joshua F Baker 5, Ted R Mikuls 2, Bryant R England 2 Affiliations • 1 Mayo Clinic, Rochester, Minnesota. • 2 The Department of Veterans Affairs Nebraska-Western Iowa Health Care System and the University of Nebraska Medical Center, Omaha. • 3 University of Washington, Seattle. • 4 Salt Lake City Department of Veterans Affairs and the University of Utah. • 5 Corporal Michael J. Crescenz Department of Veterans Affairs and the University of Pennsylvania, Philadelphia. Abstract Objective: We aimed to evaluate lung cancer risk in patients with rheumatoid arthritis (RA) and RA-interstitial lung disease (ILD). Methods: We performed a retrospective, matched cohort study of RA and RA-ILD within the Veterans Health Administration (VA) between 2000 and 2019. Patients with RA and RA-ILD were identified with validated administrative-based algorithms, then matched (up to 1:10) on age, gender, and VA enrollment year to individuals without RA. Lung cancers were identified from a VA oncology database and the National Death Index. Conditional Cox regression models assessed lung cancer risk adjusting for race, ethnicity, smoking status, Agent Orange exposure, and comorbidity burden among matched individuals. Several sensitivity analyses were performed. Results: We matched 72,795 patients with RA with 633,937 patients without RA (mean age 63 years; 88% male). Over 4,481,323 patient-years, 17,099 incident lung cancers occurred. RA was independently associated with an increased lung cancer risk (adjusted hazard ratio [aHR] 1.58 [95% confidence interval (CI) 1.52-1.64]), which persisted in never smokers (aHR 1.65 [95% CI 1.22-2.24]) and in those with incident RA (aHR 1.54 [95% CI 1.44-1.65]). Compared to non-RA controls, prevalent RA-ILD (n = 757) was more strongly associated with lung cancer risk (aHR 3.25 [95% CI 2.13-4.95]) than RA without ILD (aHR 1.57 [95% CI 1.51-1.64]). Analyses of both prevalent and incident RA-ILD produced similar results (RA-ILD vs non-RA aHR 2.88 [95% CI 2.45-3.40]). Conclusion: RA was associated with a >50% increased risk of lung cancer, and those with RA-ILD represented a particularly high-risk group with an approximate three-fold increased risk. Increased lung cancer surveillance in RA, and especially RA-ILD, may be a useful strategy for reducing the burden posed by the leading cause of cancer death.