2023 ACR/CHEST Guideline: Screening & Monitoring ILD in Systemic Autoimmune Rheumatic Diseases

At December 04, 2024

"2023 American College of Rheumatology (ACR)/American College of Chest Physicians (CHEST) Guideline for the Screening and Monitoring of Interstitial Lung Disease in People with Systemic Autoimmune Rheumatic Diseases"

Arthritis Rheumatol. 2024 Aug;76(8):1201-1213. doi: 10.1002/art.42860.Epub 2024 Jul 8.

Sindhu R Johnson 1, Elana J Bernstein 2, Marcy B Bolster 3, Jonathan H Chung 4, Sonye K Danoff 5, Michael D George 6, Dinesh Khanna 7, Gordon Guyatt 8, Reza D Mirza 8, Rohit Aggarwal 9, Aberdeen Allen Jr 10, Shervin Assassi 11, Lenore Buckley 12, Hassan A Chami 5, Douglas S Corwin 13, Paul F Dellaripa 14, Robyn T Domsic 9, Tracy J Doyle 14, Catherine Marie Falardeau 15, Tracy M Frech 16, Fiona K Gibbons 3, Monique Hinchcliff 12, Cheilonda Johnson 6, Jeffrey P Kanne 17, John S Kim 18, Sian Yik Lim 19, Scott Matson 20, Zsuzsanna H McMahan 5, Samantha J Merck 21, Kiana Nesbitt 22, Mary Beth Scholand 23, Lee Shapiro 24, Christine D Sharkey 17, Ross Summer 25, John Varga 7, Anil Warrier 26, Sandeep K Agarwal 27, Danielle Antin-Ozerkis 12, Bradford Bemiss 28, Vaidehi Chowdhary 12, Jane E Dematte D'Amico 28, Robert Hallowell 3, Alicia M Hinze 29, Patil A Injean 30, Nikhil Jiwrajka 6, Elena K Joerns 31, Joyce S Lee 32, Ashima Makol 29, Gregory C McDermott 14, Jake G Natalini 33, Justin M Oldham 7, Didem Saygin 9, Kimberly Showalter Lakin 34, Namrata Singh 35, Joshua J Solomon 36, Jeffrey A Sparks 14, Marat Turgunbaev 37, Samera Vaseer 38, Amy Turner 37, Stacey Uhl 39, Ilya Ivlev 39

Affiliations

• 1 University of Toronto, Schroeder Arthritis Institute, Toronto Western Hospital, Mount Sinai Hospital, Toronto, Ontario, Canada.
• 2 Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York City.
• 3 Massachusetts General Hospital, Boston.
• 4 The University of Chicago Medicine, Chicago, Illinois.
• 5 Johns Hopkins University School of Medicine, Baltimore, Maryland.
• 6 University of Pennsylvania, Philadelphia.
• 7 University of Michigan, Ann Arbor.
• 8 McMaster University, Hamilton, Ontario, Canada.
• 9 University of Pittsburgh, Pittsburgh, Pennsylvania.
• 10 Parlin, New Jersey.
• 11 University of Texas Health Science Center at Houston.
• 12 Yale School of Medicine, New Haven, Connecticut.
• 13 St. Luke's University Health Network, Bethlehem, Pennsylvania.
• 14 Brigham and Women's Hospital, Boston, Massachusetts.
• 15 Kissimmee, Florida.
• 16 Vanderbilt University Medical Center, Nashville, Tennessee.
• 17 University of Wisconsin School of Medicine and Public Health, Madison.
• 18 University of Virginia School of Medicine, Charlottesville.
• 19 Hawaii Pacific Health, Aiea.
• 20 University of Kansas Medical Center, Kansas City.
• 21 Saint Francis Health System, Tulsa, Oklahoma.
• 22 Lansdowne, Pennsylvania.
• 23 University of Utah, Salt Lake City.
• 24 Albany Medical College, Albany, New York.
• 25 Thomas Jefferson University Hospital, Philadelphia, Pennsylvania.
• 26 Millennium Physicians, Huntsville, Texas.
• 27 Baylor College of Medicine, Houston, Texas.
• 28 Northwestern University, Chicago, Illinois.
• 29 Mayo Clinic, Rochester, Minnesota.
• 30 Cedars-Sinai, Los Angeles, California.
• 31 UT Southwestern Medical Center, Dallas, Texas.
• 32 University of Colorado Denver, Aurora.
• 33 New York University Langone Health, New York City.
• 34 Hospital for Special Surgery, Weill Cornell Medicine, New York City.
• 35 University of Washington, Seattle.
• 36 National Jewish Health, Denver, Colorado.
• 37 American College of Rheumatology, Atlanta, Georgia.
• 38 University of Oklahoma, Oklahoma City.
• 39 ECRI, Center for Clinical Evidence and Guidelines, Plymouth Meeting, Pennsylvania.

Abstract

Objective: We provide evidence-based recommendations regarding screening for interstitial lung disease (ILD) and the monitoring for ILD progression in people with systemic autoimmune rheumatic diseases (SARDs), specifically rheumatoid arthritis, systemic sclerosis, idiopathic inflammatory myopathies, mixed connective tissue disease, and Sjögren disease.

Methods: We developed clinically relevant population, intervention, comparator, and outcomes questions related to screening and monitoring for ILD in patients with SARDs. A systematic literature review was performed, and the available evidence was rated using the Grading of Recommendations, Assessment, Development, and Evaluation methodology. A Voting Panel of interdisciplinary clinician experts and patients achieved consensus on the direction and strength of each recommendation.

Results: Fifteen recommendations were developed. For screening people with these SARDs at risk for ILD, we conditionally recommend pulmonary function tests (PFTs) and high-resolution computed tomography of the chest (HRCT chest); conditionally recommend against screening with 6-minute walk test distance (6MWD), chest radiography, ambulatory desaturation testing, or bronchoscopy; and strongly recommend against screening with surgical lung biopsy. We conditionally recommend monitoring ILD with PFTs, HRCT chest, and ambulatory desaturation testing and conditionally recommend against monitoring with 6MWD, chest radiography, or bronchoscopy. We provide guidance on ILD risk factors and suggestions on frequency of testing to evaluate for the development of ILD in people with SARDs.

Conclusion: This clinical practice guideline presents the first recommendations endorsed by the American College of Rheumatology and American College of Chest Physicians for the screening and monitoring of ILD in people with SARDs.

Related News

Potential of PDE4B Inhibitors for Treating ILD Associated with Autoimmune Diseases

PMID: 39212123 Abstract: Patients with autoimmune disease-related interstitial lung disease may develop pulmonary fibrosis, which may become progressive. Progressive pulmonary fibrosis (PPF) is associated with poor outcomes. Antifibrotic therapies have shown efficacy as treatments for PPF in patients with autoimmune diseases, but new treatments are needed to slow or halt disease progression. Phosphodiesterases (PDEs) are enzymes that mediate the hydrolysis of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Pre-clinical data suggest that preferential inhibition of PDE4B has the potential to slow the progression of pulmonary fibrosis by inhibiting inflammatory and fibrotic pathways, with a lower risk of gastrointestinal adverse events than associated with pan-PDE4 inhibitors. Nerandomilast (BI 1015550) is a preferential PDE4 inhibitor that has demonstrated anti-inflammatory and antifibrotic effects in pre-clinical studies. In a phase II trial in patients with idiopathic pulmonary fibrosis, nerandomilast (given alone or on top of background antifibrotic therapy) prevented a decrease in lung function over 12 weeks with an acceptable safety and tolerability profile. The phase III FIBRONEER-ILD trial is evaluating the efficacy and safety of nerandomilast, given alone or on top of nintedanib, in patients with PPF, including PPF associated with autoimmune diseases. In this article, we review the potential of PDE4B inhibition in the treatment of ILD associated with autoimmune diseases, including the pre-clinical and early clinical data available to date.

Phase III Double-Blind RCT of BI 1015550 in Idiopathic Pulmonary Fibrosis Patients (FIBRONEER-IPF)

Design of a phase III, double-blind, randomised, placebo-controlled trial of BI 1015550 in patients with idiopathic pulmonary fibrosis (FIBRONEER-IPF) PMID: 37597969 Abstract: IntroductionThere is an unmet need for new treatments for idiopathic pulmonary fibrosis (IPF). The oral preferential phosphodiesterase 4B inhibitor, BI 1015550, prevented a decline in forced vital capacity (FVC) in a phase II study in patients with IPF. This study design describes the subsequent pivotal phase III study of BI 1015550 in patients with IPF (FIBRONEER-IPF). Methods and analysis: In this placebo-controlled, double-blind, phase III trial, patients are being randomised in a 1:1:1 ratio to receive 9 mg or 18 mg of BI 1015550 or placebo two times per day over at least 52 weeks, stratified by use of background antifibrotics (nintedanib/pirfenidone vs neither). The primary endpoint is the absolute change in FVC at week 52. The key secondary endpoint is a composite of time to first acute IPF exacerbation, hospitalisation due to respiratory cause or death over the duration of the trial. Ethics and dissemination: The trial is being carried out in compliance with the ethical principles of the Declaration of Helsinki, in accordance with the International Council on Harmonisation Guideline for Good Clinical Practice and other local ethics committees. The results of the study will be disseminated at scientific congresses and in peer-reviewed publications. Trial registration number: NCT05321069.

RA-ILD: Update on Prevalence, Risk Factors, Pathogenesis, and Therapy

Curr Rheumatol Rep. 2024 Sep 25. doi: 10.1007/s11926-024-01155-8. Online ahead of print. Daniel I Sullivan 1, Dana P Ascherman 2 Affiliations • 1Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, UPMC Montefiore Hospital, 3459 Fifth Ave, NW 628, Pittsburgh, PA, 15213, USA. dsulliva@pitt.edu. • 2Division of Rheumatology and Clinical Immunology, Department of Medicine, Abstract Purpose of review: Rheumatoid arthritis is frequently complicated by interstitial lung disease (RA-ILD), an underappreciated contributor to excess morbidity and mortality. The true prevalence of RA-ILD is difficult to define given the variability in diagnostic criteria used. The lack of standardized screening methods, an incomplete understanding of disease pathogenesis, and dearth of validated biomarkers have limited the development of controlled clinical trials for this disease. Recent findings: Numerous studies have focused on clinical, radiographic, genetic, molecular, and/or serologic markers of disease severity as well as risk of disease progression. In addition to defining valuable clinical biomarkers, these studies have provided insights regarding the pathogenesis of RA-ILD and potential therapeutic targets. Additional studies involving immunomodulatory and/or anti-fibrotic agents have assessed new therapeutic options for different stages of RA-ILD. RA-ILD continues to be a major contributor to the increased morbidity and mortality associated with RA. Advancements in our understanding of disease pathogenesis at a molecular level are necessary to drive the development of more targeted therapy.